Recovery of Sparse Probability Measures via Convex Programming

نویسندگان

  • Mert Pilanci
  • Laurent El Ghaoui
  • Venkat Chandrasekaran
چکیده

We consider the problem of cardinality penalized optimization of a convex function over the probability simplex with additional convex constraints. The classical `1 regularizer fails to promote sparsity on the probability simplex since `1 norm on the probability simplex is trivially constant. We propose a direct relaxation of the minimum cardinality problem and show that it can be efficiently solved using convex programming. As a first application we consider recovering a sparse probability measure given moment constraints, in which our formulation becomes linear programming, hence can be solved very efficiently. A sufficient condition for exact recovery of the minimum cardinality solution is derived for arbitrary affine constraints. We then develop a penalized version for the noisy setting which can be solved using second order cone programs. The proposed method outperforms known rescaling heuristics based on `1 norm. As a second application we consider convex clustering using a sparse Gaussian mixture and compare our results with the well known soft k-means algorithm.

منابع مشابه

Sparse Signal Recovery from Quadratic Measurements via Convex Programming

In this paper we consider a system of quadratic equations |〈zj ,x〉|2 = bj , j = 1, ...,m, where x ∈ R is unknown while normal random vectors zj ∈ R and quadratic measurements bj ∈ R are known. The system is assumed to be underdetermined, i.e., m < n. We prove that if there exists a sparse solution x i.e., at most k components of x are non-zero, then by solving a convex optimization program, we ...

متن کامل

Sparse and Low-rank Matrix Decomposition via Alternating Direction Methods

The problem of recovering the sparse and low-rank components of a matrix captures a broad spectrum of applications. Authors in [4] proposed the concept of ”rank-sparsity incoherence” to characterize the fundamental identifiability of the recovery, and derived practical sufficient conditions to ensure the high possibility of recovery. This exact recovery is achieved via solving a convex relaxati...

متن کامل

Restricted Isometry Property of Principal Component Pursuit with Reduced Linear Measurements

The principal component prsuit with reduced linear measurements (PCP RLM) has gained great attention in applications, such as machine learning, video, and aligningmultiple images.The recent research shows that strongly convex optimization for compressive principal component pursuit can guarantee the exact low-rank matrix recovery and sparse matrix recovery as well. In this paper, we prove that ...

متن کامل

Sparse and Low-Rank Matrix Decomposition Via Alternating Direction Method

The problem of recovering sparse and low-rank components of a given matrix captures a broad spectrum of applications. However, this recovery problem is NP-hard and thus not tractable in general. Recently, it was shown in [3, 6] that this recovery problem can be well approached by solving a convex relaxation problem where the l1-norm and the nuclear norm are used to induce sparse and low-rank st...

متن کامل

Fixed point theory and semidefinite programming for computable performance analysis of block-sparsity recovery

In this paper, we employ fixed point theory and semidefinite programming to compute the performance bounds on convex block-sparsity recovery algorithms. As a prerequisite for optimal sensing matrix design, a computable performance bound would open doors for wide applications in sensor arrays, radar, DNA microarrays, and many other areas where block-sparsity arises naturally. We define a family ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012